By Topic

An Autonomic Service Delivery Platform for Service-Oriented Network Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

In this paper, we propose a novel autonomic service delivery platform for service-oriented network environments. The platform enables a self-optimizing infrastructure that balances the goals of maximizing the business value derived from processing service requests and the optimal utilization of IT resources. We believe that our proposal is the first of its kind to integrate several well-established theoretical and practical techniques from networking, microeconomics, and service-oriented computing to form a fully distributed service delivery platform. The principal component of the platform is a utility-based cooperative service routing protocol that disseminates congestion-based prices among intermediaries to enable the dynamic routing of service requests from consumers to providers. We provide the motivation for such a platform and formally present our proposed architecture. We discuss the underlying analytical framework for the service routing protocol, as well as key methodologies which together provide a robust framework for our service delivery platform that is applicable to the next-generation of middleware and telecommunications architectures. We discuss issues regarding the fairness of service rate allocations, as well as the use of nonconcave utility functions in the service routing protocol. We also provide numerical results that demonstrate the ability of the platform to provide optimal routing of service requests.

Published in:

Services Computing, IEEE Transactions on  (Volume:3 ,  Issue: 2 )