By Topic

An Improved Decoding Algorithm for the Davey-MacKay Construction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Briffa, J.A. ; Dept. of Comput., Univ. of Surrey, Guildford, UK ; Schaathun, H.G. ; Wesemeyer, S.

The Deletion-Insertion Correcting Code construction proposed by Davey and MacKay consists of an inner code that recovers synchronization and an outer code that provides substitution error protection. The inner code uses low-weight codewords which are added (modulo two) to a pilot sequence. The receiver is able to synchronise on the pilot sequence in spite of the changes introduced by the added codeword. The original bit-level formulation of the inner decoder assumes that all bits in the sparse codebook are identically and independently distributed. Not only is this assumption inaccurate, but it also prevents the use of soft a- priori input to the decoder. We propose an alternative symbol-level inner decoding algorithm that takes the actual codebook into account. Simulation results show that the proposed algorithm has an improved performance with only a small penalty in complexity, and it allows other improvements using inner codes with larger minimum distance.

Published in:

Communications (ICC), 2010 IEEE International Conference on

Date of Conference:

23-27 May 2010