By Topic

Innovative liquid cooling configurations for high heat flux applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Parida, P.R. ; Dept. of Mech. Eng., Virginia Tech, Blacksburg, VA, USA ; Ekkad, S.V. ; Khai Ngo

Breakthroughs in the recent cutting-edge technologies have become increasingly dependent on the ability to safely dissipate large amount of heat from small areas. Improvements in cooling techniques are therefore required to avoid unacceptable temperature rise and at the same time maintain a high efficiency. Jet impingement is one such cooling scheme which has been widely used to dissipate transient and steady concentrated heat loads. But with constantly increasing cooling needs, conventional jet impingement cooling is no longer a viable option. Considerable improvements are therefore required to meets such stringent requirements. A combination of swirl-impingement-fin generating geometry is one such alternative. Even without a fin, an overall enhancement of 150% - 200% in the maximum heat transfer coefficient has been recorded both experimentally and computationally due to impingement and associated swirl. Moreover, the presence of fins further increases the cooling area. The present scheme is therefore expected to overcome the existing heat distribution and cooling problems in high heat flux dissipating devices.

Published in:

Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2010 12th IEEE Intersociety Conference on

Date of Conference:

2-5 June 2010