Cart (Loading....) | Create Account
Close category search window
 

Shape from Specular Flow

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Adato, Y. ; Dept. of Comput. Sci., Ben-Gurion Univ. of the Negev, Beer-Sheva, Israel ; Vasilyev, Y. ; Zickler, T. ; Ben-Shahar, O.

An image of a specular (mirror-like) object is nothing but a distorted reflection of its environment. When the environment is unknown, reconstructing shape from such an image can be very difficult. This reconstruction task can be made tractable when, instead of a single image, one observes relative motion between the specular object and its environment, and therefore, a motion field-or specular flow-in the image plane. In this paper, we study the shape from specular flow problem and show that observable specular flow is directly related to surface shape through a nonlinear partial differential equation. This equation has the key property of depending only on the relative motion of the environment while being independent of its content. We take first steps toward understanding and exploiting this PDE, and we examine its qualitative properties in relation to shape geometry. We analyze several cases in which the surface shape can be recovered in closed form, and we show that, under certain conditions, specular shape can be reconstructed when both the relative motion and the content of the environment are unknown. We discuss numerical issues related to the proposed reconstruction algorithms, and we validate our findings using both real and synthetic data.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:32 ,  Issue: 11 )

Date of Publication:

Nov. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.