By Topic

Exploiting Microscopic Spectrum Opportunities in Cognitive Radio Networks via Coordinated Channel Access

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tao Shu ; Dept. of Electr. & Comput. Eng., Univ. of Arizona, Tucson, AZ, USA ; Krunz, M.

Under the current opportunistic spectrum access (OSA) paradigm, a common belief is that a cognitive radio (CR) can use a channel only when this channel is not being used by any neighboring primary radio (PR). Therefore, the existence of a spectrum opportunity hinges on the absence of active cochannel PRs in a macroscopic region. In this paper, we propose the concept of microscopic spectrum opportunity and show that CRs can still utilize this type of opportunities without interfering with active cochannel PRs, even when these PRs are close to them. As a result, a channel may at the same time present different levels of availability to different CRs. Channel access needs to be carefully coordinated between these CRs to avoid collisions, and more importantly, ensure efficient utilization of the spectrum opportunity from a network's standpoint. In this paper, we formulate the coordinated channel access as a joint power/rate control and channel assignment optimization problem, with the objective of maximizing the sum-rate achieved by the cognitive radio network (CRN). We develop both centralized and distributed algorithms to solve this problem. Our simulation results show that even when accounting for the implementation overhead, significant throughput gain is achieved under our designs.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:9 ,  Issue: 11 )