By Topic

Cross-Layer Quality Assessment of Scalable Video Services on Mobile Embedded Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kyungtae Kang ; University of Illinois at Urbana-Champaign, Urbana, IL ; Won J. Jeon ; Kyung-Joon Park ; Roy H. Campbell
more authors

The recent development of high-speed data transmission over wireless cellular networks has enabled the delivery of multimedia broadcasting services to mobile users. These services involve a range of interactions among different system components, including the wireless channel, the network, and mobile devices, making it crucial for the service provider to verify the model, design, and behavior of a new service before it is deployed. However, previous studies have largely relied on network simulations or scaled experiments, and there has been little work on the sort of unified framework for quality-of-service (QoS) assessment, which considers the interactions between components, that we propose in this paper. Accurate models of the wireless channel, the network, and the data processing that takes place on an embedded system of a mobile client, are integrated within our framework, and allow us to predict several key system metrics and the quality of the video stream as it is perceived by users. Furthermore, different models of system components can be easily plugged in to extend this framework. As an example application, we analyze the performance of the process of decoding scalable videos on ARM-based mobile embedded systems in CDMA2000 wireless cellular networks.

Published in:

IEEE Transactions on Mobile Computing  (Volume:9 ,  Issue: 10 )