By Topic

Experience with CONSER: A System for Server Control through Fluid Modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Malrait, L. ; NeCS Networked Controlled Syst. Res. Group, INRIA-Gipsa Lab., St. Ismier, France ; Bouchenak, S. ; Marchand, N.

Server technology provides a means to support a wide range of online services and applications. However, their ad hoc configuration poses significant challenges to the performance, availability, and economical costs of applications. In this paper, we examine the impact of server configuration on the central trade-off between service performance and availability. First, we present a server model as a nonlinear continuous-time model using fluid approximations. Second, we develop concurrency control on server systems for an optimal configuration. We primarily provide two control laws for two different QoS objectives. AM-C is an availability-maximizing server control that achieves the highest service availability given a fixed performance constraint; and PM-C is a performance-maximizing control law that meets a desired availability target with the highest performance. We then improve the control with two additional multilevel laws. AA-PM-C is an availability-aware performance-maximizing control, and PA-AM-C is a performance-aware availability-maximizing control. In this paper, we present ConSer, a novel system for the control of servers. We evaluate ConSer's fluid model and control techniques on the TPC-C industry-standard benchmark. Our experiments show that the proposed techniques successfully guarantee performance and availability constraints.

Published in:

Computers, IEEE Transactions on  (Volume:60 ,  Issue: 7 )