By Topic

Extracting Protein Interactions from Text with the Unified AkaneRE Event Extraction System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Sætre, R. ; Dept. of Inf. Sci., Univ. of Tokyo, Tokyo, Japan ; Yoshida, K. ; Miwa, M. ; Matsuzaki, T.
more authors

Currently, relation extraction (RE) and event extraction (EE) are the two main streams of biological information extraction. In 2009, the majority of these RE and EE research efforts were centered around the BioCreative II.5 Protein-Protein Interaction (PPI) challenge and the “BioNLP event extraction shared task.” Although these challenges took somewhat different approaches, they share the same ultimate goal of extracting bio-knowledge from the literature. This paper compares the two challenge task definitions, and presents a unified system that was successfully applied in both these and several other PPI extraction task settings. The AkaneRE system has three parts: A core engine for RE, a pool of modules for specific solutions, and a configuration language to adapt the system to different tasks. The core engine is based on machine learning, using either Support Vector Machines or Statistical Classifiers and features extracted from given training data. The specific modules solve tasks like sentence boundary detection, tokenization, stemming, part-of-speech tagging, parsing, named entity recognition, generation of potential relations, generation of machine learning features for each relation, and finally, assignment of confidence scores and ranking of candidate relations. With these components, the AkaneRE system produces state-of-the-art results, and the system is freely available for academic purposes at http://www-tsujii.is.s.u-tokyo.ac.jp/satre/akane/.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:7 ,  Issue: 3 )