By Topic

A Risk-Based Model Predictive Control Approach to Adaptive Interventions in Behavioral Health

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zafra-Cabeza, A. ; Dept. of Autom. Control & Syst. Eng., Univ. of Seville, Sevilla, Spain ; Rivera, D.E. ; Collins, L.M. ; Ridao, M.A.
more authors

This brief examines how control engineering and risk management techniques can be applied in the field of behavioral health through their use in the design and implementation of adaptive behavioral interventions. Adaptive interventions are gaining increasing acceptance as a means to improve prevention and treatment of chronic, relapsing disorders, such as abuse of alcohol, tobacco, and other drugs, mental illness, and obesity. A risk-based model predictive control (MPC) algorithm is developed for a hypothetical intervention inspired by Fast Track, a real-life program whose long-term goal is the prevention of conduct disorders in at-risk children. The MPC-based algorithm decides on the appropriate frequency of counselor home visits, mentoring sessions, and the availability of after-school recreation activities by relying on a model that includes identifiable risks, their costs, and the cost/benefit assessment of mitigating actions. MPC is particularly suited for the problem because of its constraint-handling capabilities, and its ability to scale to interventions involving multiple tailoring variables. By systematically accounting for risks and adapting treatment components over time, an MPC approach as described in this brief can increase intervention effectiveness and adherence while reducing waste, resulting in advantages over conventional fixed treatment. A series of simulations are conducted under varying conditions to demonstrate the effectiveness of the algorithm.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:19 ,  Issue: 4 )