By Topic

Stabilization for Sampled-Data Neural-Network-Based Control Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xun-Lin Zhu ; Sch. of Comput. & Commun. Eng., Zhengzhou Univ. of Light Ind., Zhengzhou, China ; Youyi Wang

This paper studies the problem of stabilization for sampled-data neural-network-based control systems with an optimal guaranteed cost. Unlike previous works, the resulting closed-loop system with variable uncertain sampling cannot simply be regarded as an ordinary continuous-time system with a fast-varying delay in the state. By defining a novel piecewise Lyapunov functional and using a convex combination technique, the characteristic of sampled-data systems is captured. A new delay-dependent stabilization criterion is established in terms of linear matrix inequalities such that the maximal sampling interval and the minimal guaranteed cost control performance can be obtained. It is shown that the newly proposed approach can lead to less conservative and less complex results than the existing ones. Application examples are given to illustrate the effectiveness and the benefits of the proposed method.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:41 ,  Issue: 1 )