By Topic

Approximate Robust Policy Iteration Using Multilayer Perceptron Neural Networks for Discounted Infinite-Horizon Markov Decision Processes With Uncertain Correlated Transition Matrices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Baohua Li ; Arkansas Inst. for Nanomater. Sci. & Eng., Univ. of Arkansas, Fayetteville, AR, USA ; Jennie Si

We study finite-state, finite-action, discounted infinite-horizon Markov decision processes with uncertain correlated transition matrices in deterministic policy spaces. Existing robust dynamic programming methods cannot be extended to solving this class of general problems. In this paper, based on a robust optimality criterion, an approximate robust policy iteration using a multilayer perceptron neural network is proposed. It is proven that the proposed algorithm converges in finite iterations, and it converges to a stationary optimal or near-optimal policy in a probability sense. In addition, we point out that sometimes even a direct enumeration may not be applicable to addressing this class of problems. However, a direct enumeration based on our proposed maximum value approximation over the parameter space is a feasible approach. We provide further analysis to show that our proposed algorithm is more efficient than such an enumeration method for various scenarios.

Published in:

Neural Networks, IEEE Transactions on  (Volume:21 ,  Issue: 8 )