By Topic

Harvesting and Transferring Vertical Pillar Arrays of Single-Crystal Semiconductor Devices to Arbitrary Substrates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Logeeswaran, V.J. ; Dept. of Electr. & Comput. Eng., Univ. of California at Davis, Davis, CA, USA ; Katzenmeyer, A.M. ; Islam, M.S.

Development of devices that can be fabricated on amorphous substrates using multiple single-crystal semiconductors with different physical, electrical, and optical characteristics is important for highly efficient portable and flexible electronics, optoelectronics, and energy conversion devices. Reducing the use of single-crystal substrates can contribute to low-cost and environmentally benign devices covering a large area. We demonstrate a technique to harvest and transfer vertically aligned single-crystal semiconductor micro- and nanopillars from a single-crystal substrate to a low-cost carrier substrate while simultaneously preserving the integrity, order, shape, and fidelity of the transferred pillar arrays. The transfer technique facilitates multilayer process integration by exploiting a vertical embossing and lateral fracturing method using a spin-coated polymer layer on a carrier substrate. Electrical contacts are formed using a bilayer of metal and conducting polymer such as gold (Au) and polyaniline (PAni). In this method, the original single-crystal substrate can be repeatedly used for generating more devices and is minimally consumed, whereas in conventional fabrication methods, the substrate is employed solely as a mechanical support. This heterogeneous integration technique potentially offers devices with low physical fill factor contributing to lower leakage current and noise, reduced parasitic capacitance, and enhanced photon-semiconductor interactions, and enables heterogeneous multimaterial integration such as silicon with compound semiconductors for rapidly expanding large-scale applications, including low-cost and flexible electronics, displays, tactile sensors, and energy conversion systems.

Published in:

Electron Devices, IEEE Transactions on  (Volume:57 ,  Issue: 8 )