By Topic

Adaptive Neural Control for Output Feedback Nonlinear Systems Using a Barrier Lyapunov Function

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Beibei Ren ; Department of Electrical and Computer Engineering, National University of Singapore, Singapore ; Shuzhi Sam Ge ; Keng Peng Tee ; Tong Heng Lee

In this brief, adaptive neural control is presented for a class of output feedback nonlinear systems in the presence of unknown functions. The unknown functions are handled via on-line neural network (NN) control using only output measurements. A barrier Lyapunov function (BLF) is introduced to address two open and challenging problems in the neuro-control area: 1) for any initial compact set, how to determine a priori the compact superset, on which NN approximation is valid; and 2) how to ensure that the arguments of the unknown functions remain within the specified compact superset. By ensuring boundedness of the BLF, we actively constrain the argument of the unknown functions to remain within a compact superset such that the NN approximation conditions hold. The semiglobal boundedness of all closed-loop signals is ensured, and the tracking error converges to a neighborhood of zero. Simulation results demonstrate the effectiveness of the proposed approach.

Published in:

IEEE Transactions on Neural Networks  (Volume:21 ,  Issue: 8 )