By Topic

Design of Frequency Reconfigurable Antennas Using the Theory of Network Characteristic Modes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Obeidat, K.A. ; Dept. of Electr. & Comput. Eng., ElectroScience Lab., Columbus, OH, USA ; Raines, B.D. ; Rojas, R.G. ; Strojny, B.T.

This paper demonstrates a design procedure for frequency tunable reconfigurable antennas based on the application of reactive loads. Unlike other design procedures, antennas of arbitrary geometry can be tuned utilizing the proposed design framework. The design technique utilizes the theory of network characteristic modes to systematically compute reactive load values required to resonate any antenna at many frequency points in a wide frequency range. For simplicity, a 1.2 m dipole antenna is used to demonstrate the design procedure by tuning it at four loading ports along the antenna body. Both simulations and measurements demonstrate wide frequency tunability characteristics of the dipole input impedance (tunability range wider than 1:4) while preserving the radiation pattern and polarization at seven different frequency states. Lastly, a loaded PIFA is briefly examined as a more complex application of the procedure.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:58 ,  Issue: 10 )