Cart (Loading....) | Create Account
Close category search window

A Measurement System for the Complex Far-Field of Physically Large Antenna Arrays Under Noisy Conditions Utilizing the Equivalent Electric Current Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lindgren, T. ; Dept. of Comput. Sci. & Electr. Eng., Lulea Univ. of Technol., Luleå, Sweden ; Ekman, J. ; Backén, S.

Precipitation in the form of snow or rain could severely degrade the performance of large antenna arrays, in particular if knowledge about the beam shape and pointing direction in absolute numbers is necessary. In this paper, a method of estimating the far-field of each individual antenna element using the equivalent electric current approach is presented. Both a least squares estimator and a Kalman filter was used to solve the resulting system of equation and their performance was compared. Simulation results shows that the estimated far-field for one antenna element is very accurate if there is no noise on the signal. During noisier conditions the Kalman filter gives less noisy results while the systematic errors are slightly larger compared to the least squares estimator.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:58 ,  Issue: 10 )

Date of Publication:

Oct. 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.