By Topic

Sensor fault detection and identification using Kernel PCA and its fast data reconstruction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Peng Hong-xing ; Sch. of Comput. Sci. & Technol., Henan Polytech. Univ., Jiaozuo, China ; Wang Rui ; Hai Lin-peng

In this paper, a novel sensor fault detection and identification technique based on kernel principal component analysis (KPCA) and its fast data reconstruction is presented. Although it has been proved that KPCA shows a better performance for sensor fault detection, the fault identification method has rarely been developed. Using the fast data reconstruction based on distance constraint, we employ the residuals of variables to identify the faulty sensor. Since the proposed method does not include iterative calculation, it has a lower calculation burden and is more suitable for online application. The simulation results show that the proposed method effectively identifies the source of typical sensor faults.

Published in:

Control and Decision Conference (CCDC), 2010 Chinese

Date of Conference:

26-28 May 2010