By Topic

Adaptive cosine transform image coding with constant block distortion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Pearlman, W.A. ; Dept. of Electr., Comput. & Syst. Eng., Rensselaer Polytech. Inst., Troy, NY, USA

An adaptive block discrete-cosine transform (DCT) coding scheme is implemented with the same average distortion designated for each block. This constant distortion designation not only has perceptual advantages, but also allows the rate to vary, adjusting to the changing spectral characteristics among the blocks. The successful execution of this scheme requires a different spectral estimate for each block. To keep overhead and computation within limits, a novel technique is introduced by which a two-dimensional block spectrum is characterized by a one-dimensional autoregressive model. Simulations with images of natural scenes and medical radiology provide reconstructions with nearly uniform block distortion and very high visual and measurable quality at low rates

Published in:

Communications, IEEE Transactions on  (Volume:38 ,  Issue: 5 )