By Topic

Protein secondary structure prediction based on improved SVM method in compound pyramid model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bingru Yang ; Sch. of Inf. Eng., Univ. of Sci. & Technol. Beijing, Beijing, China ; Wu Qu ; Yun Zhai ; Haifeng Sui

Methods for predicting protein secondary structure provide information that is useful both in ab initio structure prediction and as additional restraints for fold recognition algorithms. Secondary structure predictions may also be used to guide the design of site directed mutagenesis studies, and to locate potential functionally important residues. In this article, we propose a method of improved SVM for predicting protein secondary structure. Using evolutionary information contained in amino acid's physicochemical properties, position-specific scoring matrix generated by psi-blast as input to improved SVM, secondary structure can be predicted at significantly increased accuracy. Based on KDTICM theory, we have constructed a compound pyramid model, which is composed of four layers of the intelligent interface and integrated in several ways, such as improved SVM, mixed-modal BP, KDD* method and so on. On the RS126 data set, state overall per-residue accuracy, Q3 reached 83.06%, while SOV99 accuracy increased to 80.6%.On the CB513 data set, Q3 reached 80.49%, SOV99 accuracy increased to 79.84%.This article briefly introduces this model and highlights the improved SVM method.

Published in:

Control and Decision Conference (CCDC), 2010 Chinese

Date of Conference:

26-28 May 2010