Cart (Loading....) | Create Account
Close category search window
 

Near-Optimal Joint Antenna Selection for Amplify-and-Forward Relay Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yangyang Zhang ; Dept. of Electr. & Electron. Eng., Univ. Coll. London, London, UK ; Gan Zheng ; Chunlin Ji ; Kai-Kit Wong
more authors

This paper considers a joint antenna selection method in amplify-and-forward (AF) relay networks where the source, relay and destination terminals are all equipped with multiple antennas. The fact that the system's full diversity can be maintained by antenna selection at each terminal makes it a promising solution to reduce the hardware complexity of multiple-input multiple-output (MIMO) terminals while realizing the diversity benefits of MIMO in relay networks. Since the exhaustive search for antenna subset selection is computationally prohibitive, we devise a low-complexity near-optimal joint antenna selection algorithm based on a constrained cross entropy optimization (CCEO) method to maximize the achievable rate and the convergence is guaranteed. Simulation results reveal both the effectiveness and the efficiency of the proposed algorithm and the significant performance improvement over other benchmark selection techniques. Finally, it is illustrated that the proposed CCEO algorithm can always achieve near-optimal results regardless of the number of selected antennas, outage probabilities and the signal-to-noise ratios (SNRs) at the terminals.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:9 ,  Issue: 8 )

Date of Publication:

August 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.