By Topic

Probabilistic evaluation of transient stability of a power system incorporating wind farms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. O. Faried ; Power Systems Research Group, University of Saskatchewan, Canada ; R. Billinton ; S. Aboreshaid

This study presents a stochastic-based approach to evaluate the probabilistic transient stability indices of a power system incorporating wind farms (WFs). In this context, investigations have been conducted on a hypothetical test system representing a typical power system taking into consideration the uncertainties of the factors associated with the practical operation of a power system, namely fault type, fault location, fault impedance, fault clearing process, system parameters and operating conditions and high-speed reclosing process. The effects of the WF sizes and locations on the overall system stability have been investigated. Moreover, this study presents stochastic models for the wind turbine as well as the spring constant of the reduced two-mass shaft model of the wind generator. The time-domain simulations are obtained using the electro-magnetic transient programme.

Published in:

IET Renewable Power Generation  (Volume:4 ,  Issue: 4 )