Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Markov Models for Biogeography-Based Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Simon, D. ; Dept. of Electr. & Comput. Eng., Cleveland State Univ., Cleveland, OH, USA ; Ergezer, M. ; Dawei Du ; Rarick, R.

Biogeography-based optimization (BBO) is a population-based evolutionary algorithm that is based on the mathematics of biogeography. Biogeography is the science and study of the geographical distribution of biological organisms. In BBO, problem solutions are analogous to islands, and the sharing of features between solutions is analogous to the migration of species. This paper derives Markov models for BBO with selection, migration, and mutation operators. Our models give the theoretically exact limiting probabilities for each possible population distribution for a given problem. We provide simulation results to confirm the Markov models.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:41 ,  Issue: 1 )