Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Stimulation of the Human Lumbar Spinal Cord With Implanted and Surface Electrodes: A Computer Simulation Study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ladenbauer, J. ; Dept. of Software Eng. & Theor. Comput. Sci., Tech. Univ. Berlin, Berlin, Germany ; Minassian, K. ; Hofstoetter, U.S. ; Dimitrijevic, M.R.
more authors

Human lumbar spinal cord networks controlling stepping and standing can be activated through posterior root stimulation using implanted electrodes. A new stimulation method utilizing surface electrodes has been shown to excite lumbar posterior root fibers similarly as with implants, an unexpected finding considering the distance to these target neurons. In the present study we apply computer modeling to compare the depolarization of posterior root fibers by both stimulation techniques. We further examine the potential for additional direct activation of motoneurons within the anterior roots. Using an implant, action potentials are initiated in the posterior root fibers at their entry into the spinal cord or along the longitudinal portions of the fiber trajectories, depending on the cathode position. For transcutaneous stimulation low threshold sites of the same fibers are identified at their exits from the spinal canal in addition to their spinal cord entries. In these exit regions anterior root fibers can also be activated. The simulation results provide a biophysical explanation for the electrophysiological findings of lower limb muscle responses induced by posterior root stimulation. Efficient excitation of afferent spinal cord structures with a simple noninvasive method can become a promising modality in the rehabilitation of people with motor disorders.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:18 ,  Issue: 6 )