By Topic

A Discrete-Time Neural Network for Optimization Problems With Hybrid Constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Huajin Tang ; Inst. for Infocomm Res., Agency for Sci. Technol. & Res. (A*STAR), Singapore, Singapore ; Haizhou Li ; Zhang Yi

Recurrent neural networks have become a prominent tool for optimizations including linear or nonlinear variational inequalities and programming, due to its regular mathematical properties and well-defined parallel structure. This brief presents a general discrete-time recurrent network for linear variational inequalities and related optimization problems with hybrid constraints. In contrary to the existing discrete-time networks, this general model can operate not only on bound constraints, but also on hybrid constraints comprised of inequality, equality and bound constraints. The model has dynamical properties of global convergence, asymptotical and exponential convergences under some weaker conditions. Numerical examples demonstrate its efficacy and performance.

Published in:

Neural Networks, IEEE Transactions on  (Volume:21 ,  Issue: 7 )