By Topic

A Low-Power Full-Band Low-Noise Amplifier for Ultra-Wideband Receivers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ro-Min Weng ; Dept. of Electr. Eng., Nat. Dong Hwa Univ., Hualien, Taiwan ; Chun-Yu Liu ; Po-Cheng Lin

In this paper, a low-power full-band low-noise amplifier (FB-LNA) for ultra-wideband applications is presented. The proposed FB-LNA uses a stagger-tuning technique to extend the full bandwidth from 3.1 to 10.6 GHz. A current-reused architecture is employed to decrease the power consumption. By using an input common-gate stage, the input resistance of 50 Ω can be obtained without an extra input-matching network. The output matching is achieved by cascading an output common-drain stage. FB-LNA was implemented with a TSMC 0.18-μm CMOS process. On-wafer measurement shows an average power gain of 9.7 dB within the full operation band. The input reflection coefficient and the output reflection coefficient are both less than -10 dB over the entire band. The noise figure of the full band remained under 7 dB with a minimum value of 5.27 dB. The linearity of input third-order intercept point is -2.23 dBm. The power consumptions at 1.5-V supply voltage without an output buffer is 4.5 mW. The chip area occupies 1.17 × 0.88 mm2.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:58 ,  Issue: 8 )