By Topic

Personalization Algorithm for Real-Time Activity Recognition Using PDA, Wireless Motion Bands, and Binary Decision Tree

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pärkkä, J. ; VTT Tech. Res. Centre of Finland, Tampere, Finland ; Cluitmans, L. ; Ermes, M.

Inactive and sedentary lifestyle is a major problem in many industrialized countries today. Automatic recognition of type of physical activity can be used to show the user the distribution of his daily activities and to motivate him into more active lifestyle. In this study, an automatic activity-recognition system consisting of wireless motion bands and a PDA is evaluated. The system classifies raw sensor data into activity types online. It uses a decision tree classifier, which has low computational cost and low battery consumption. The classifier parameters can be personalized online by performing a short bout of an activity and by telling the system which activity is being performed. Data were collected with seven volunteers during five everyday activities: lying, sitting/standing, walking, running, and cycling. The online system can detect these activities with overall 86.6% accuracy and with 94.0% accuracy after classifier personalization.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:14 ,  Issue: 5 )