By Topic

Random Walks on Graphs for Salient Object Detection in Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gopalakrishnan, V. ; Centre for Multimedia & Network Technol., Nanyang Technol. Univ., Singapore, Singapore ; Yiqun Hu ; Rajan, D.

We formulate the problem of salient object detection in images as an automatic labeling problem on the vertices of a weighted graph. The seed (labeled) nodes are first detected using Markov random walks performed on two different graphs that represent the image. While the global properties of the image are computed from the random walk on a complete graph, the local properties are computed from a sparse k-regular graph. The most salient node is selected as the one which is globally most isolated but falls on a locally compact object. A few background nodes and salient nodes are further identified based upon the random walk based hitting time to the most salient node. The salient nodes and the background nodes will constitute the labeled nodes. A new graph representation of the image that represents the saliency between nodes more accurately, the “pop-out graph” model, is computed further based upon the knowledge of the labeled salient and background nodes. A semisupervised learning technique is used to determine the labels of the unlabeled nodes by optimizing a smoothness objective label function on the newly created “pop-out graph” model along with some weighted soft constraints on the labeled nodes.

Published in:

Image Processing, IEEE Transactions on  (Volume:19 ,  Issue: 12 )