By Topic

A Blind Watermarking Scheme Using New Nontensor Product Wavelet Filter Banks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xinge You ; Department of Electronics and Information Engineering, Huazhong University of Science and Technology, ; Liang Du ; Yiu-ming Cheung ; Qiuhui Chen

As an effective method for copyright protection of digital products against illegal usage, watermarking in wavelet domain has recently received considerable attention due to the desirable multiresolution property of wavelet transform. In general, images can be represented with different resolutions by the wavelet decomposition, analogous to the human visual system (HVS). Usually, human eyes are insensitive to image singularities revealed by different high frequency subbands of wavelet decomposed images. Hence, adding watermarks into these singularities will improve the imperceptibility that is a desired property of a watermarking scheme. That is, the capability for revealing singularities of images plays a key role in designing wavelet-based watermarking algorithms. Unfortunately, the existing wavelets have a limited ability in revealing singularities in different directions. This motivates us to construct new wavelet filter banks that can reveal singularities in all directions. In this paper, we utilize special symmetric matrices to construct the new nontensor product wavelet filter banks, which can capture the singularities in all directions. Empirical studies will show their advantages of revealing singularities in comparison with the existing wavelets. Based upon these new wavelet filter banks, we, therefore, propose a modified significant difference watermarking algorithm. Experimental results show its promising results.

Published in:

IEEE Transactions on Image Processing  (Volume:19 ,  Issue: 12 )