By Topic

Automated Layer Segmentation of Optical Coherence Tomography Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Under the framework of computer-aided diagnosis, optical coherence tomography (OCT) has become an established ocular imaging technique that can be used in glaucoma diagnosis by measuring the retinal nerve fiber layer thickness. This letter presents an automated retinal layer segmentation technique for OCT images. In the proposed technique, an OCT image is first cut into multiple vessel and nonvessel sections by the retinal blood vessels that are detected through an iterative polynomial smoothing procedure. The nonvessel sections are then filtered by a bilateral filter and a median filter that suppress the local image noise but keep the global image variation across the retinal layer boundary. Finally, the layer boundaries of the filtered nonvessel sections are detected, which are further classified to different retinal layers to determine the complete retinal layer boundaries. Experiments over OCT for four subjects show that the proposed technique segments an OCT image into five layers accurately.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:57 ,  Issue: 10 )