By Topic

Flat XOR-based erasure codes in storage systems: Constructions, efficient recovery, and tradeoffs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Large scale storage systems require multi-disk fault tolerant erasure codes. Replication and RAID extensions that protect against two- and three-disk failures offer a stark tradeoff between how much data must be stored, and how much data must be read to recover a failed disk. Flat XOR-codes-erasure codes in which parity disks are calculated as the XOR of some subset of data disks-offer a tradeoff between these extremes. In this paper, we describe constructions of two novel flat XOR-code, Stepped Combination and HD-Combination codes. We describe an algorithm for flat XOR-codes that enumerates recovery equations, i.e., sets of disks that can recover a failed disk. We also describe two algorithms for flat XOR-codes that generate recovery schedules, i.e., sets of recovery equations that can be used in concert to achieve efficient recovery. Finally, we analyze the key storage properties of many flat XOR-codes and of MDS codes such as replication and RAID 6 to show the cost-benefit tradeoff gap that flat XOR-codes can fill.

Published in:

Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th Symposium on

Date of Conference:

3-7 May 2010