By Topic

The application of improved boosting algorithm in neural network based on cloud model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Xue Qing Ji ; Wuhan Univ. of Technol., Wuhan, China

An effective ensemble should consist of a set of networks that are both accurate and diverse. Ensemble learning is an algorithm to improve the generalization ability of the unstable classifier. We propose an improved boosting algorithm based on cloud model for constructing neural network ensemble, where cloud model is used to classify trained networks according to similarity and optimally select the most accurate individual network from each cluster to make up the ensemble. Empirical studies on regression of typical datasets showed that this approach yields significantly smaller ensemble achieving better performance than other traditional ones such as Bagging and Boosting. The bias variance decomposition of the predictive error shows that the success of the proposed approach may lie in its properly tuning the bias/variance trade-off to reduce the prediction error.

Published in:

E-Health Networking, Digital Ecosystems and Technologies (EDT), 2010 International Conference on  (Volume:2 )

Date of Conference:

17-18 April 2010