System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Collaborative spectrum sensing from sparse observations using matrix completion for cognitive radio networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jia Meng ; Dept. of Electr. & Comput. Eng., Univ. of Houston, Houston, TX, USA ; Wotao Yin ; Husheng Li ; Houssain, E.
more authors

In cognitive radio, spectrum sensing is a key component to detect spectrum holes (i.e., channels not used by any primary users). Collaborative spectrum sensing among the cognitive radio nodes is expected to improve the ability of checking complete spectrum usage states. Unfortunately, due to power limitation and channel fading, available channel sensing information is far from being sufficient to tell the unoccupied channels directly. Aiming at breaking this bottleneck, we apply recent matrix completion techniques to greatly reduce the sensing information needed. We formulate the collaborative sensing problem as a matrix completion subproblem and a joint-sparsity reconstruction subproblem. Results of numerical simulations that validated the effectiveness and robustness of the proposed approach are presented. In particular, in noiseless cases, when number of primary user is small, exact detection was obtained with no more than 8% of the complete sensing information, whilst as number of primary user increases, to achieve a detection rate of 95.55%, the required information percentage was merely 16.8%.

Published in:

Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on

Date of Conference:

14-19 March 2010