By Topic

Switching bilateral filter with a texture/noise detector for universal noise removal

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chih Hsing Lin ; Department of Computer Science, National Tsing-Hua University, Hsinchu, Taiwan ; Jia Shiuan Tsai ; Ching Te Chiu

In this paper, we propose a switching bilateral filter (SBF) with a texture and noise detector for universal noise removal. Operation was carried out in two stages: detection followed by filtering. For detection, we propose the sorted quadrant median vector (SQMV) scheme, which includes important features such as edge or texture information. This information is utilized to allocate a reference median from SQMV, which is in turn compared with a current pixel to classify it as impulse noise, Gaussian noise, or noise-free. The SBF removes both Gaussian and impulse noise without adding another weighting function. The range filter inside the bilateral filter switches between the Gaussian and impulse modes depending on the noise classification result. Simulation results show that our noise detector has a high noise detection rate as well as a high classification rate for salt-and-pepper, uniform impulse noise and mixed impulse noise. Unlike most other impulse noise filters, the proposed SBF achieves high peak signal-to-noise ratio and great image quality by efficiently removing both types of mixed noise, salt-and-pepper with uniform noise and salt-and-pepper with Gaussian noise. In addition, the computational complexity of SBF is significantly less than that of other mixed noise filters.

Published in:

2010 IEEE International Conference on Acoustics, Speech and Signal Processing

Date of Conference:

14-19 March 2010