Cart (Loading....) | Create Account
Close category search window
 

Convolutionally interleaved PSK and DPSK trellis codes for shadowed, fast fading mobile satellite communication channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lee, A.C.M. ; Dept. of Electr. Eng., Queen''s Univ., Kingston, Ont., Canada ; McLane, Peter J.

Using a model from the literature, the performance of convolutionally interleaved phase-shift-keying (PSK) and differential phase-shift-keying (DPSK) trellis codes for digital speech transmission over shadowed mobile satellite communication channels is determined by computer simulation. First the characteristics of fading channels are examined and analyzed in terms of the probability distributions of amplitude, phase, and burst errors. A statistical method, using a histogram approach, is utilized along with the simulations of fading channels to generate these probability distributions. A test for channel burst error behavior is presented. A periodic convolutional interleaver/deinterleaver to be used with trellis coding to combat slow fading in digital, shadowed mobile satellite channels is designed. This interleaver ha less than half the time delay for the same bit error performance than a block interleaver. The results show that the periodic convolutional interleaver provides considerable improvement in the error and time delay performance of mobile satellite communication channels for up to average shadowing conditions as compared to other techniques

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:39 ,  Issue: 1 )

Date of Publication:

Feb 1990

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.