By Topic

Joint sparsity-driven inversion and model error correction for radar imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Önhon, N.O. ; Fac. of Eng. & Natural Sci., Sabanci Univ., Istanbul, Turkey ; Cetin, M.

Solution of inverse problems in imaging requires the use of a mathematical model of the observation process. However such models often involve errors and uncertainties themselves. The application of interest in this paper is synthetic aperture radar (SAR) imaging, which particularly suffers from motion-induced model errors. These types of errors result in phase errors in SAR data which cause defocusing of the reconstructed image. Mostly, phase errors vary only in cross-range direction. However, in many situations, it is possible to encounter 2D phase errors, which are both range and cross-range dependent. We propose a sparsity-driven method for joint SAR imaging and correction of 1D as well as 2D phase errors. This method performs phase error correction during the image formation process and provides focused, high-resolution images. Experimental results show the effectiveness of the approach.

Published in:

Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on

Date of Conference:

14-19 March 2010