By Topic

Shape matching based on graph alignment using hidden Markov models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiaoning Qian ; Dept. of Comput. Sci. & Eng., Univ. of South Florida, Tampa, FL, USA ; Byung-Jun Yoon

We present a novel framework based on hidden Markov models (HMMs) for matching feature point sets, which capture the shapes of object contours of interest. Point matching algorithms provide effective tools for shape analysis, an important problem in computer vision and image processing applications. Typically, it is computationally expensive to find the optimal correspondence between feature points in different sets, hence existing algorithms often resort to various heuristics that find suboptimal solutions. Unlike most of the previous algorithms, the proposed HMM-based framework allows us to find the optimal correspondence using an efficient dynamic programming algorithm, where the computational complexity of the resulting shape matching algorithm grows only linearly with the size of the respective point sets. We demonstrate the promising potential of the proposed algorithm based on several benchmark data sets.

Published in:

Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on

Date of Conference:

14-19 March 2010