By Topic

Time-varying wideband underwater acoustic channel estimation for OFDM communications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Josso, N.F. ; GIPSA-Lab., DIS, Grenoble Inst. of Technol., Grenoble, France ; Zhang, J.J. ; Fertonani, D. ; Papandreou-Suppappola, A.
more authors

We investigate two methods for estimating the matched signal transformations caused by time-varying underwater acoustic channels in orthogonal frequency division multiplexing (OFDM) communication systems. The underwater acoustic channel for this 12-20 kHz medium frequency range OFDM system is best modeled using multipath and wideband Doppler scale changes on the transmitted signal. As a result, our first channel estimation method is based on discretizing the wideband spreading function time-scale representation of the channel output using the Mellin transform. The second method is based on extracting the time-scale features of distinct ray paths in the received signal using a modified matching pursuit decomposition algorithm. We validate and discuss both methods using data from the recent Kauai Acomms MURI 2008 (KAM08) underwater acoustic communication experiment.

Published in:

Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on

Date of Conference:

14-19 March 2010