By Topic

Sound source separation in monaural music signals using excitation-filter model and em algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Anssi Klapuri ; Queen Mary University of London, Centre for Digital Music, UK ; Tuomas Virtanen ; Toni Heittola

This paper proposes a method for separating the signals of individual musical instruments from monaural musical audio. The mixture signal is modeled as a sum of the spectra of individual musical sounds which are further represented as a product of excitations and filters. The excitations are restricted to harmonic spectra and their fundamental frequencies are estimated in advance using a multipitch estimator, whereas the filters are restricted to have smooth frequency responses by modeling them as a sum of elementary functions on Mel-frequency scale. A novel expectation-maximization (EM) algorithm is proposed which jointly learns the filter responses and organizes the excitations (musical notes) to filters (instruments). In simulations, the method achieved over 5 dB SNR improvement compared to the mixture signals when separating two or three musical instruments from each other. A slight further improvement was achieved by utilizing musical properties in the initialization of the algorithm.

Published in:

2010 IEEE International Conference on Acoustics, Speech and Signal Processing

Date of Conference:

14-19 March 2010