By Topic

Variational Bayesian inference for point process generalized linear models in neural spike trains analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhe Chen ; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, 02139, USA ; Kloosterman, Fabian ; Wilson, M.A. ; Brown, E.N.

Point process generalized linear models (GLMs) have been widely used for neural spike trains analysis. Statistical inference for GLMs include maximum likelihood and Bayesian estimation. Variational Bayesian (VB) methods provide a computationally appealing means to infer the posterior density of unknown parameters, in which conjugate priors are designed for the regression coefficients in logistic and Poisson regression. In this paper, we develop and apply VB inference for point process GLMs in neural spike train analysis. The hierarchical Bayesian framework allows us to tackle the variable selection problem. We assess and validate our methods with ensemble neuronal recordings from rat's hippocampal place cells and entorhinal cortical cells during foraging in an open field environment.

Published in:

Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on

Date of Conference:

14-19 March 2010