By Topic

Automatic disfluency removal for improving spoken language translation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wen Wang ; Speech Technol. & Res. Lab., SRI Int., Menlo Park, CA, USA ; Tur, G. ; Jing Zheng ; Ayan, N.F.

Statistical machine translation (SMT) systems for spoken languages suffer from conversational speech phenomena, in particular, the presence of speech disfluencies. We examine the impact of disfluencies from broadcast conversation data on our hierarchical phrase-based SMT system and implement automatic disfluency removal approaches for cleansing the MT input. We evaluate the efficacy of proposed approaches and investigate the impact of disfluency removal on SMT performance across different disfluency types. We show that for translating Mandarin broadcast conversational transcripts into English, our automatic disfluency removal approaches could produce significant improvement in BLEU and TER.

Published in:

Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on

Date of Conference:

14-19 March 2010