By Topic

Fast total variation image restoration with parameter estimation using bayesian inference

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

In this paper we propose two fast Total Variation (TV) based algorithms for image restoration by utilizing variational posterior distribution approximation. The unknown image and the hyperparameters for the image and observation models are formulated and estimated simultaneously within a hierachical Bayesian framework, rendering the algorithms fully-automated without any free parameters. Experimental results demonstrate that the proposed algorithms provide restoration results competitive to existing methods in terms of image quality while achieving superior computational efficiency.

Published in:

Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on

Date of Conference:

14-19 March 2010