By Topic

Joint Iterative Power Allocation and Interference Suppression Algorithms for Cooperative DS-CDMA Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rodrigo C. de Lamare ; Dept. of Electron., Univ. of York, York, UK ; Sheng Li

This work presents joint iterative power allocation and interference suppression algorithms for DS-CDMA networks which employ multiple relays and the amplify and forward cooperation strategy. We propose a joint constrained optimization framework that considers the allocation of power levels across the relays subject to individual and global power constraints and the design of linear receivers for interference suppression. We derive constrained minimum mean-squared error (MMSE) expressions for the parameter vectors that determine the optimal power levels across the relays and the parameters of the linear receivers. In order to solve the proposed optimization problems efficiently, we develop recursive least squares (RLS) algorithms for adaptive joint iterative power allocation, and receiver and channel parameter estimation. Simulation results show that the proposed algorithms obtain significant gains in performance and capacity over existing schemes.

Published in:

Vehicular Technology Conference (VTC 2010-Spring), 2010 IEEE 71st

Date of Conference:

16-19 May 2010