By Topic

An Analysis of Traces from a Production MapReduce Cluster

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kavulya, S. ; Carnegie Mellon Univ., Pittsburgh, PA, USA ; Tan, J. ; Gandhi, R. ; Narasimhan, P.

MapReduce is a programming paradigm for parallel processing that is increasingly being used for data-intensive applications in cloud computing environments. An understanding of the characteristics of workloads running in MapReduce environments benefits both the service providers in the cloud and users: the service provider can use this knowledge to make better scheduling decisions, while the user can learn what aspects of their jobs impact performance. This paper analyzes 10-months of MapReduce logs from the M45 supercomputing cluster which Yahoo! made freely available to select universities for academic research. We characterize resource utilization patterns, job patterns, and sources of failures. We use an instance-based learning technique that exploits temporal locality to predict job completion times from historical data and identify potential performance problems in our dataset.

Published in:

Cluster, Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM International Conference on

Date of Conference:

17-20 May 2010