Cart (Loading....) | Create Account
Close category search window
 

A Map-Reduce System with an Alternate API for Multi-core Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wei Jiang ; Dept. of Comput. Sci. & Eng., Ohio State Univ., Columbus, OH, USA ; Ravi, V.T. ; Agrawal, G.

Map-reduce framework has received a significant attention and is being used for programming both large-scale clusters and multi-core systems. While the high productivity aspect of map-reduce has been well accepted, it is not clear if the API results in efficient implementations for different subclasses of data-intensive applications. In this paper, we present a system MATE (Map-reduce with an Alternate API), that provides a high-level, but distinct API. Particularly, our API includes a programmer-managed reduction object, which results in lower memory requirements at runtime for many data-intensive applications. MATE implements this API on top of the Phoenix system, a multi-core map-reduce implementation from Stanford. We evaluate our system using three data mining applications, and compare its performance to that of both Phoenix and Hadoop. Our results show that for all the three applications, MATE outperforms Phoenix and Hadoop. Despite achieving good scalability, MATE also maintains the easy-to-use API of map-reduce. Overall, we argue that, our approach, which is based on the generalized reduction structure, provides an alternate high-level API, leading to more efficient and scalable implementations.

Published in:

Cluster, Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM International Conference on

Date of Conference:

17-20 May 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.