By Topic

On the Use of Machine Learning to Predict the Time and Resources Consumed by Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Most data centers, clouds and grids consist of multiple generations of computing systems, each with different performance profiles, posing a challenge to job schedulers in achieving the best usage of the infrastructure. A useful piece of information for scheduling jobs, typically not available, is the extent to which applications will use available resources once they are executed. This paper comparatively assesses the suitability of several machine learning techniques for predicting spatio temporal utilization of resources by applications. Modern machine learning techniques able to handle large number of attributes are used, taking into account application- and system-specific attributes (e.g., CPU micro architecture, size and speed of memory and storage, input data characteristics and input parameters). The work also extends an existing classification tree algorithm, called Predicting Query Runtime (PQR), to the regression problem by allowing the leaves of the tree to select the best regression method for each collection of data on leaves. The new method (PQR2) yields the best average percentage error, predicting execution time, memory and disk consumption for two bioinformatics applications, BLAST and RAxML, deployed on scenarios that differ in system and usage. In specific scenarios where usage is a non-linear function of system and application attributes, certain configurations of two other machine learning algorithms, Support Vector Machine and k-nearest neighbors, also yield competitive results. In addition, experiments show that the inclusion of system performance and application-specific attributes also improves the performance of machine learning algorithms investigated.

Published in:

Cluster, Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM International Conference on

Date of Conference:

17-20 May 2010