Cart (Loading....) | Create Account
Close category search window
 

Broad-band microwave measurements with transient radiation from optoelectronically pulsed antennas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Arjavalingam, G. ; IBM, Yorktown Heights, NY, USA ; Pastol, Y. ; Halbout, J.-M. ; Kopcsay, G.V.

A broadband microwave measurement technique based on picosecond transient radiation from optoelectronically pulsed antennas is described. It is performed with exponentially tapered coplanar stripline antennas which are integrated with the photoconductive devices used for ultrafast pulse generation and sampling. The signal analysis required for deriving the desired physical properties from the measured time-domain waveforms is discussed. This is a coherent technique that independently determines both the real and the imaginary parts of the dielectric constants of materials, from 10 to 130 GHz, in a single experiment. Some representative results are presented

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:38 ,  Issue: 5 )

Date of Publication:

May 1990

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.