Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Parallel Iteration to the Radiative Transport in Inhomogeneous Media with Bootstrapping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Szirmay-Kalos, L. ; Dept. of Control Eng. & Inf. Technol., Budapest Univ. of Technol. & Econ., Budapest, Hungary ; Liktor, G. ; Umenhoffer, T. ; Tóth, B.
more authors

This paper presents a fast parallel method to solve the radiative transport equation in inhomogeneous participating media. We apply a novel approximation scheme to find a good initial guess for both the direct and scattered components. Then, the initial approximation is used to bootstrap an iterative multiple scattering solver, i.e., we let the iteration concentrate just on the residual problem. This kind of bootstrapping makes the volumetric source approximation more uniform, thus it helps to reduce the discretization artifacts and improves the efficiency of the parallel implementation. The iterative refinement is executed on a face-centered cubic grid. The implementation is based on CUDA and runs on the GPU. For large volumes that do not fit into the GPU memory, we also consider the implementation on a GPU cluster, where the volume is decomposed to blocks according to the available GPU nodes. We show how the communication bottleneck can be avoided in the cluster implementation by not exchanging the boundary conditions in every iteration step. In addition to light photons, we also discuss the generalization of the method to γ-photons that are relevant in medical simulation.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:17 ,  Issue: 2 )