By Topic

Flexible Robust Group Key Agreement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jarecki, S. ; Dept. of Comput. Sci., Univ. of California, Irvine, CA, USA ; Jihye Kim ; Tsudik, G.

A robust group key agreement protocol (GKA) allows a set of players to establish a shared secret key, regardless of network/node failures. Current constant-round GKA protocols are either efficient and nonrobust or robust but not efficient; assuming a reliable broadcast communication medium, the standard encryption-based group key agreement protocol can be robust against arbitrary number of node faults, but the size of the messages broadcast by every player is proportional to the number of players. In contrast, nonrobust group key agreement can be achieved with each player broadcasting just constant-sized messages. We propose a novel 2-round group key agreement protocol, which tolerates up to T node failures, using O(T)-sized messages for any T. We show that the new protocol implies a fully-robust group key agreement with logarithmic-sized messages and expected round complexity close to 2, assuming random node faults. The protocol can be extended to withstand malicious insiders at small constant factor increases in bandwidth and computation. The proposed protocol is secure under the (standard) Decisional Square Diffie-Hellman assumption.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:22 ,  Issue: 5 )