By Topic

Learning rate functions in CMAC neural network based control for torque ripple reduction of switched reluctance motors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Changjing Shang ; Dept. of Comput. & Electr. Eng., Heriot-Watt Univ., Edinburgh, UK ; Reay, D. ; Williams, B.

This paper presents a novel approach to adapting the weights of a CMAC neural network-based controllers for torque ripple reduction in switched reluctance motors. The proposed method modifies the conventional LMS algorithm using a varying learning rate which, for the present application, is defined as a function of the rotor angle of the motor under control. Simulation results demonstrate that developing CMAC network based adaptive controllers following this approach affords lower torque ripple with high power efficiency, whilst offering rapid learning convergence in system adaptation

Published in:

Neural Networks, 1996., IEEE International Conference on  (Volume:4 )

Date of Conference:

3-6 Jun 1996