By Topic

Matrix-Lifting Semi-Definite Programming for Detection in Multiple Antenna Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mobasher, A. ; Res. In Motion Ltd., Waterloo, ON, Canada ; Sotirov, R. ; Khandani, A.K.

This paper presents a computationally efficient decoder for multiple antenna systems. The proposed algorithm can be used for any constellation (QAM or PSK) and any labeling method. The decoder is based on matrix-lifting semi-definite programming (SDP). The strength of the proposed method lies in a new relaxation approach applied to the previous work by Mobasher This results in a reduction of the number of variables from (NK + 1)(NK + 2)/2, in the previous work by Mobasher to (2N +K)2 , in the new method, where N is twice the number of transmit antennas and K is the number of constellation points in each real dimension. It is shown that this reduction in the number of variables results in a significant computational complexity reduction compared to the previous work by Mobasher Moreover, the proposed method offers a better symbol error rate performance as compared to some known and recent SDP-based quasi-maximum likelihood detection methods reported in the literature.

Published in:

Signal Processing, IEEE Transactions on  (Volume:58 ,  Issue: 10 )