Cart (Loading....) | Create Account
Close category search window
 

Sensitivity of X-, C-, and L-Band SAR Backscatter to Burn Severity in Mediterranean Pine Forests

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Tanase, M.A. ; Dept. of Geogr., Univ. of Zaragoza, Zaragoza, Spain ; Santoro, M. ; de la Riva, J. ; Pérez-Cabello, F.
more authors

Synthetic aperture radar (SAR) data at X-, C-, and L-bands have been investigated to determine the relationship between backscatter and forest burn severity over three sites in Spain. The dependence of SAR backscatter on local incidence angle and environmental conditions has been analyzed. At HH and VV polarizations, the backscatter increased with burn severity for X- and C-bands, whereas it decreased for L-band. Cross-polarized (HV) backscatter decreased with burn severity for all frequencies. Determination coefficients were used to quantify the relationship between radar backscatter and burn severity for given intervals of local incidence angle. For X- and C-band copolarized data, higher determination coefficients were observed for slopes oriented toward the sensors, whereas for cross-polarized data, the determination coefficients were higher for slopes oriented away from the sensor. At L-band, the association strength of cross-polarized data to burn severity was high for all local incidence angles. C- and L-band cross-polarized backscatter showed better potential for burn severity estimation in the Mediterranean environment when the local incidence angle is accounted for. The small dynamic range observed for X-band data could hinder its use in forests affected by fires.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:48 ,  Issue: 10 )

Date of Publication:

Oct. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.